Differential contributions of Shaker and Shab K+ currents to neuronal firing patterns in Drosophila.

نویسندگان

  • I-Feng Peng
  • Chun-Fang Wu
چکیده

Different K(+) currents participate in generating neuronal firing patterns. The Drosophila embryonic "giant" neuron culture system has facilitated current- and voltage-clamp recordings to correlate distinct excitability patterns with the underlying K(+) currents and to delineate the mutational effects of identified K(+) channels. Mutations of Sh and Shab K(+) channels removed part of inactivating I(A) and sustained I(K), respectively, and the remaining I(A) and I(K) revealed the properties of their counterparts, e.g., Shal and Shaw channels. Neuronal subsets displaying the delayed, tonic, adaptive, and damping spike patterns were characterized by different profiles of K(+) current voltage dependence and kinetics and by differential mutational effects. Shab channels regulated membrane repolarization and repetitive firing over hundreds of milliseconds, and Shab neurons showed a gradual decline in repolarization during current injection and their spike activities became limited to high-frequency, damping firing. In contrast, Sh channels acted on events within tens of milliseconds, and Sh mutations broadened spikes and reduced firing rates without eliminating any categories of firing patterns. However, removing both Sh and Shal I(A) by 4-aminopyridine converted the delayed to damping firing pattern, demonstrating their actions in regulating spike initiation. Specific blockade of Shab I(K) by quinidine mimicked the Shab phenotypes and converted tonic firing to a damping pattern. These conversions suggest a hierarchy of complexity in K(+) current interactions underlying different firing patterns. Different lineage-defined neuronal subsets, identifiable by employing the GAL4-UAS system, displayed different profiles of spike properties and K(+) current compositions, providing opportunities for mutational analysis in functionally specialized neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct roles of CaMKII and PKA in regulation of firing patterns and K(+) currents in Drosophila neurons.

The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and the cAMP-dependent protein kinase A (PKA) cascades have been implicated in neural mechanisms underlying learning and memory as supported by mutational analyses of the two enzymes in Drosophila. While there is mounting evidence for their roles in synaptic plasticity, less attention has been directed toward their regulation of neurona...

متن کامل

The major delayed rectifier in both Drosophila neurons and muscle is encoded by Shab.

The delayed rectifier K+ current in Drosophila is similar to the classical delayed rectifier, originally described by Hodgkin and Huxley. Drosophila provides unique tools of mutant analysis to unambiguously determine the genetic identity of this native K+ current. We identified the Shab gene as the exclusive gene underlying delayed rectifier currents in both muscle and neurons. In muscles, a ge...

متن کامل

Genetic analysis of Drosophila neurons: Shal, Shaw, and Shab encode most embryonic potassium currents.

In this study, we perform the first genetic analysis of K+ currents in Drosophila embryonic neurons revealing the identity of the currents present. Unlike muscles, where the presence of Shaker is obvious, Shaker currents are not detectable in these neurons. In contrast, we show that Shal is as important in these neuronal cell bodies as Shaker is in muscles. Only three single-channel currents we...

متن کامل

Shal and shaker differential contribution to the K+ currents in the Drosophila mushroom body neurons.

Shaker, a voltage-dependent K+ channel, is enriched in the mushroom bodies (MBs), the locus of olfactory learning in Drosophila. Mutations in the shaker locus are known to alter excitability, neurotransmitter release, synaptic plasticity, and olfactory learning. However, a direct link of Shaker channels to MB intrinsic neuron (MBN) physiology has not been documented. We found that transcripts f...

متن کامل

VOLTAGE-GATED K+ CHANNELS IN DROSOPHILA PHOTORECEPTORS Biophysical study of neural coding

The activity of neurons is critically dependent upon the suite of voltage-dependent ion channels expressed in their membranes. In particular, voltage-gated K+ channels are extremely diverse in their function, contributing to the regulation of distinct aspects of neuronal activity by shaping the voltage responses. In this study the role of K+ channels in neural coding is investigated in Drosophi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 97 1  شماره 

صفحات  -

تاریخ انتشار 2007